Electrophysiologic effects of acute myocardial ischemia: a theoretical study of altered cell excitability and action potential duration.

نویسندگان

  • R M Shaw
  • Y Rudy
چکیده

OBJECTIVE To study the ionic mechanisms of electrophysiologic changes in cell excitability and action potential duration during the acute phase of myocardial ischemia. METHODS Using an ionic-based theoretical model of the cardiac ventricular cell, the dynamic LRd model, we have simulated the three major component conditions of acute ischemia (elevated [K]o, acidosis and anoxia) at the level of individual ionic currents and ionic concentrations. The conditions were applied individually and in combination to identify ionic mechanisms responsible for reduced excitability at rest potentials, delayed recovery of excitability, and shortened action potential duration. RESULTS Increased extracellular potassium ([K]o) had the major effect on cell excitability by depolarizing resting membrane potential (Vrest), causing reduction in sodium channel availability. Acidosis caused a [K]o-independent reduction in maximum upstroke velocity, (dVm/dt)max. A transition from sodium-current dominated to calcium-current dominated upstroke occurred, and calcium current alone was able to sustain the upstroke, but only after sodium channels were almost completely (97%) inactivated. Acidic conditions prevented the transition to calcium dominated upstroke by acidic reduction of both sodium and calcium currents. Anoxia, simulated by lowering [ATP]i and activating the APT-dependent potassium current, IK(ATP), was the only process that could decrease action potential duration by more than 50% and reproduce AP shape changes that are observed experimentally. Acidic or anoxic depression of the L-type calcium current could not reproduce the observed action potential shape changes and APD shortening. Delayed recovery of excitability, known as 'post-repolarization refractoriness', was determined by the voltage-dependent kinetics of sodium channel recovery; Vrest depolarization caused by elevated [K]o increased the time constant of (dVm/dt)max recovery from tau = 10.3 ms at [K]o = 4.5 mM to tau = 81.4 ms at [K]o = 12 mM, reflecting major slowing of sodium-channel recovery. Anoxia and acidosis had little affect on tau. CONCLUSIONS The major conditions of acute ischemia, namely elevated [K]o, acidosis and anoxia, applied at the ionic channel level are sufficient to simulate the major electrical changes associated with ischemia. Depression of membrane excitability and delayed recovery of excitability in the single, unloaded cell are caused by elevated [K]o with additional excitability depression by acidosis. Major changes in action potential duration and shape can only be accounted for by anoxia-dependent opening of IK(ATP).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antibiotic Supplements Affect Electrophysiological Properties and Excitability of Rat Hippocampal Pyramidal Neurons in Primary Culture

Introduction: Antibiotic supplements are regularly used in neuronal culture media to control contamination however, they can interfere with the neuronal excitability and affect electrophysiological properties. Therefore, in this study, the effect of penicillin/streptomycin supplements on the spontaneous electrophysiological activity of hippocampal pyramidal neurons was examined. Methods: Electr...

متن کامل

Effect of losartan on NOX2 transcription following acute myocardial ischemia-reperfusion

Introduction: Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-2 (Nox2) is one of the predominant sources of ROS production during myocardial ischemia-reperfusion and can be induced by angiotensin II. The evidence suggests that pharmacological blockers of renin-angiotensin system can exert direct tissue effects independent of their ability to regulate blood pressure. The mechanism...

متن کامل

Experimental model of effects on normal tissue of injury current from ischemic region.

An ischemic myocardial region contains cells with a depolarized resting membrane potential. This depolarization leads to an intercellular current flow between the ischemic region and the surrounding normal myocardial cells, which has been termed an "injury current." We have devised an experimental model system in which an isolated rabbit ventricular cell is electrically coupled to a model depol...

متن کامل

The electrophysiologic time-course of acute myocardial ischemia and the effects of early coronary artery reperfusion.

Bipolar potentials were recorded from intramural electrodes located within areas of acute myocardial ischemia in dogs. Alterations in bipolar potential electromotive force (EMF) and local activation times were measured at predetermined intervals up to 12 hours after coronary occlusion. Histochemical stains were used to correlate structural-biochemical changes with sites of electrophysiologic ch...

متن کامل

Effects of quinidine sulfate on the balance among active and passive cellular properties that comprise the electrophysiologic matrix and determine excitability in sheep Purkinje fibers.

Quinidine is the most commonly used drug for the chronic treatment of ventricular arrhythmias, but it may be arrhythmogenic. Much information exists concerning quinidine's effects on active properties in cardiac tissues, but virtually nothing is known of its effects on passive properties. We studied the effects of quinidine, in a clinically relevant concentration, on the balance among active an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cardiovascular research

دوره 35 2  شماره 

صفحات  -

تاریخ انتشار 1997